Blog

You will find here articles, guides, tutorials related to quantitative finance.

Probability & Statistics

Quasi-Monte Carlo Methods

Monte Carlo is a very flexible numerical method which can model and price complex instruments when other methods can not. But it has the strong

Read More
Credit Risk Modelling and Management

Credit Risk: an Introduction

We will give an introduction to credit risk, presenting the main types of credit risk, the key components and measures of credit risk, discussing the

Read More
Volatility & Derivatives

From Black-Scholes to Heat Equation

The Black-Scholes Model The Black-Scholes model is a pricing model used to determine the theoretical price of options contracts. It was developed by Fischer Black

Read More
Probability & Statistics

The Merton Jump Diffusion Model

Merton Jump Diffusion Model The Merton Jump Diffusion model proposed by Merton in 1976 is an extension of the Black-Scholes model (link). It contains: μ:

Read More
Probability & Statistics

The Poisson Process

The Poisson process N(t) is a counting process used to describe the occurrence of events in a time interval of length t. It satisfies the

Read More
Probability & Statistics

The Cox-Ingersoll-Ross (CIR) Model

The Cox-Ingersoll-Ross (CIR) model is a stochastic interest rate model used in finance to describe the evolution of interest rates.  The model was introduced in

Read More
Probability & Statistics

The Vasicek Model

The Vasicek model is a mathematical model used in finance to describe the movement of interest rates over time. It was developed by Oldrich Vasicek

Read More
Probability & Statistics

The Brownian Motion: an Introduction

The Brownian motion is one of the most famous and important stochastic process. Let’s start with a bit of history. Robert Brown discovered the Brownian

Read More
Volatility & Derivatives

The Black-Scholes Model

The Black-Scholes model is a pricing model used to determine the theoretical price of options contracts. It was developed by Fischer Black and Myron Scholes

Read More
Volatility & Derivatives

Why Does Volatility Smile and Smirk?

The Volatility is Constant in the Black-Scholes Model… In the Black-Scholes model, the volatility of a stock price is assumed to be constant, independent of

Read More
Probability & Statistics

Introduction to Stochastic Calculus

Foundations of Stochastic Calculus Stochastic Calculus is a branch of mathematics that deals with random processes. Beyond probabilities it also has links with differential equations,

Read More